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Abstract

A set of powerful tools has been developed in the last years for the design of new stellarator devices. These codes, usu-
ally working in magnetic co-ordinates, comprise minimization of neoclassical transport, maximizing equilibrium and sta-
bility properties, etc. However, for certain conditions the stellarator magnetic field can be originally obtained in the real
space coordinates and there is no necessity in its transformation to magnetic coordinates. Here a procedure working in real
space co-ordinates is presented for maximizing the plasma energy content, based on reducing the most unfavorable, 1/v,
neoclassical transport. This tool is especially useful for existing stellarator devices which are not fully optimized with
respect to neoclassical transport. Preliminary results for the “heliac-type” stellarator TJ-II are presented showing a con-
figuration with almost twice the stored energy of the standard TJ-II configuration.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

It has always been considered that the main disadvantage of stellarators is their rapid loss of high energetic
particles and high neoclassical 1/v transport associated to their fully three dimensional magnetic field. The rea-
son of these both phenomena is an enhanced VB drift of locally trapped particles across magnetic surfaces.
However, recent theoretical, as well as computational, advancements have allowed to design new stellarators
with superb neoclassical confinement properties, based on the concept of quasi-symmetry (see, ¢.g. [1-3]) or
quasi-isodynamicity (see, e.g. [4-7]). The details of these configurations have been obtained through an
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optimization process in which different factors, weighting different physical or technical aspects of the device,
are included. The usual starting point for such studies is the structure of the magnetic field, like imposing some
type of quasi-symmetry, and thus most of numerical methods used are done in magnetic co-ordinates.
Through an iterative process the physical goals are optimized and the feasibility of the coils is obtained by
reversed engineering. These optimization techniques have shown to be so successful that it would be desirable
to take advantage of them on existing devices in search for new operational regimes, or for evaluating possible
upgrades. At the same time, for certain conditions the stellarator magnetic field can be originally obtained in
real space coordinates and there is no necessity in its transformation to magnetic coordinates. In this case
some advantages come into existence such as, e.g. the absence of the indicated transformation, the methods
worked out for the transport study in real-space coordinates can be successfully used, taking into account
the influence of magnetic islands and stochastic regions more easily and the possibility of more rapid analysis
for complex configurations. Such an approach is applied to the analysis of the 1/v transport properties of stell-
arators in the present paper.

According to [8] among the various regimes of neoclassical transport just the 1/v transport should be opti-
mized. For new optimized stellarators (e.g. HSX [9], NCSX [10,11], QPS [12,13]) conditions corresponding to
low 1/v transport have been a design goal. For existing stellarators a certain decrease of this transport can be
achieved by changes in coil currents (as it is done, e.g. for LHD).

In the present paper the 1/v transport properties of stellarators are analyzed by evaluating the energy con-
tent in the plasma. This content is increasing with decreasing transport coefficients. The energy confinement
time which is connected to the energy content is one of the main characteristics of an experimental fusion
device. As long as the core plasma is deeply in a collisionless regime the energy content is weakly sensitive
to the temperature at the plasma boundary at large and, therefore, the influence of outer regions where the
plateau or the Pfirsch-Schliiter regimes are important, is small. A relatively simple parameter like the energy
content in the 1/v regime allows to limit the scope of optimization to the optimization of the magnetic field
geometry which is, nevertheless, a demanding problem from computing time expense point of view.

So, optimizing the total stored energy in the plasma corresponds to optimizing the stellarator transport
properties. For such an optimization the tool called SORSSA has been developed and is described in this
paper. It is designed for optimizing stellarators with fixed coil design and allows to analyze improvements
which can be done through changes of the coil currents (and/or coil positions). To calculate the necessary
1/v transport coefficients the field line integration technique [14] is used. The advantage of this technique is
that the computations can be done for arbitrary stellarator magnetic fields using real space variables and
all kinds of trapped particles are taken into account. With such an approach SORSSA optimizes the magnetic
field produced by the coil currents of the device. Therefore, the optimization results are valid for the equilibria
with a small plasma pressure or for devices with weak influence of the finite plasma pressure on the equilib-
rium magnetic configuration, e.g. for “heliac-type” devices like TJ-II [15]. These conditions allow for optimi-
zation fully in real space without any restrictions to the complexity of the magnetic field. This is in contrast to
existing codes (e.g. [16] and [17]) for optimizing fusion devices in magnetic coordinates where MHD equilib-
rium codes (like VMEC [18]) are necessary.

We can assume that in TJ-II, for a sufficiently small f, the position and shape of the magnetic surfaces only
slightly differ from those for the vacuum field and the neoclassical transport is approximately the same as for
vacuum magnetic field. We can appeal to Refs. [1,8] in which it is pointed out that the properties of a stella-
rator configuration are completely determined by prescribing the shape of an outermost magnetic surface.
When the magnetic field is given in magnetic coordinates, the neoclassical transport properties are linked with
the structure of the magnetic field in those coordinates. However, in our approach it is not necessary to ana-
lyze this structure since the method [14] has been worked out for the direct calculation of the neoclassical
transport coefficients in any stellarator magnetic field independently of the coordinate system and indepen-
dently of the mod-B structure. The applicability of this method has been demonstrated in a number of works
(see, e.g. [10,13,19]). At high f, in spite of a strongly helical magnetic axis the influence of the plasma pressure
and the plasma currents can be manifested through the plasma position and shape, the variation of the rota-
tional transform and the formation of magnetic islands. The correct evaluation of the bootstrap current is still
an open question for devices like TJ-II because of large convergence problems in the long mean free path
regime in DKES [20,21]. Monte Carlo techniques still are not able to give a reliable estimation of the bootstrap
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current coefficients. In general, these effects only can be considered by means of three-dimensional MHD equi-
librium codes such as VMEC, PIES [22], HINT [23,24]. Moreover, only the PIES and HINT codes can study
magnetic island formation caused by finite . But applying these two codes is really a very costly procedure.
We cannot claim that the technique used in the present work is readily applicable to finite beta. However, it
does provide magnetic configurations that are good candidates and also give a good indication of the potential
improvement in the transport properties of the device.

The model for computing the total stored energy is presented in Section 2. A convenient definition of an
effective radius of flux surfaces, as well as the detection of islands and stochastic zones are described there.
The optimization scheme and the necessary adaption for the presented tool SORSSA are outlined in Section
3. In Section 4 an application to the “heliac-type” stellarator TJ-II [15] is presented. This device is well suited
for this purpose, because it has a very high equilibrium beta, and therefore the plasma position and shape
change very little with increasing beta. Preliminary computations of the stored energy for TJ-II have been
done in Ref. [25]. And, finally, in Section 5 a conclusion is given.

2. Physics basis

Even in the most quiescent discharge a minimum level of randomly microscopic electromagnetic field fluc-
tuations are present. These thermal fluctuations resulting from particle discreteness allow for a diffusive par-
ticle or energy loss. The corresponding minimal interactions are Coulomb collisions. These type of losses is
irreducible (see, e.g. [26]). Compared to the classical transport theory for a magnetic field with straight field
lines, the complication of the field configuration and hence more complex trajectories of particles in stellara-
tors lead to a considerable increase in transport coefficients which is described by the neoclassical transport
theory. Among various neoclassical transport regimes in stellarators, the so-called 1/v transport regime is
the most unfavorable. Therefore, minimization of neoclassical transport in this regime is very important
for stellarator transport optimization [8]. Lowering the 1/v transport even at zero electric field will have the
beneficial effect of also lowering the associated transport rates in the presence of an electric field. For a simple
model of the stellarator magnetic field the dependence of the 1/v transport on the magnetic field geometry is
determined by the helical ripple [27]. In stellarators of general geometry the analogous dependence is usually
considered by definition of an effective ripple (equivalent helical ripple), e.q, (see, e.g. in [28]). This means here
that for a general stellarator magnetic field the transport coefficient can be presented in the same form as for
the standard stellarator [27] just re-defining the amplitude of the ripple modulation. In this general case
clearly, the magnetic field cannot be described by a single helical ripple harmonic. So, the 1/v neoclassical
transport is measured by the effective ripple e.q, which is a function of the effective radius of the flux surface
[14,25]. For good confinement properties e should be small. Assuming that neoclassical transport is domi-
nant, the effective ripple can be used to compute the total stored energy in plasma by solving the heat conduc-
tivity equation using a given particle density profile (see Section 2.1). The radial dependence of €.z can be
computed by a field line tracing code [14] where the magnetic field is directly computed from field coils without
transformation to magnetic coordinates. Additionally, a proper detection of islands and ergodic zones has to
be ensured (see Section 2.3).

Note that the 1/v neoclassical transport is considered here as the most unfavorable for energy transport. At
the same time in the experiments the energy loss due to anomalous transport often dominates the neoclassical
losses. However, in a number of experiments on W7-AS [29,30], CHS [31], LHD [32] with sufficiently high
temperature of the plasma (higher than 1 keV) an increase of the neoclassical transport to the level or higher
than the anomalous transport level has been observed. So, it can be expected that for sufficiently high plasma
temperatures the neoclassical losses in neoclassically non-optimized stellarators are dominant because they
strongly scale with the temperature.

2.1. Total stored energy
In stellarators in the presence of the radial electric field one possible scenario of neoclassical transport for

thermonuclear parameters of the plasma is that the ions are not in the 1/v regime but in the v or the /v
regimes because of their very small ion collision frequency. However, for electrons the collision frequency
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is approximately 40 times higher than for ions and, therefore, electrons are often in the 1/v regime in this
case. The plasma density fluxes are, in this case, small and correspond to v or /v regimes. However, the
heat fluxes are determined in most cases by electrons and correspond to the 1/v regime. The role of the neo-
classical electron heat transport in the 1/v regime has been discussed in, e.g. [27,29].

Let us consider flux surface averaged particle and energy densities carried by electrons which in the com-
mon literature (see, e.g. [28,21]) have the form:

1on edd 30T 1or
F“‘”(D“<m+f§ﬁa)w”?5)’ N
10n ed®d 3 0T 1 or
where (see Ref. [14])
V8 Mew /OO dee” peies G)
V92 g2 e A(z)

In accordance with the neoclassical transport theory (see, e.g. [27]) in the long mean free path conditions var-
ious regimes of the neoclassical transport can be realized dependently on the value the particle collision fre-
quency v. These are so called v, /v and 1/v regimes of transport. The v and /v regimes are realized in
presence of radial electric field for smaller v than the 1/v regime and their transport coefficients depend on
the radial electric field. At the same time the most unfavorable regime for stellarators is the 1/v regime to
which the presented paper is devoted. For this regime the positive role of the radial electric field is manifested
in decreasing the width of the v region of existence of this regime (increase of lower boundary in v) and there-
fore in decreasing the maximum value of the diffusion coefficient. But directly the radial electric field does not
enter into the transport coefficients for 1/v regime (see, e.g. [14,27]). However, equations for the particle flux
and the heat flux for different species of particles contain the terms with this field. These terms allow to express
the radial electric field corresponding to the ambipolar diffusion through the gradients of the particle density
and the temperature. After that, using this expression, the ambipolar electric field can be eliminated from the
expression for the fluxes.

In Egs. (1)~(3) vt = +/2T/m is the thermal velocity, py = mcvr/(eBy) is the mean Larmor radius, By is a
reference magnetic field, and R, is the major radius of the torus. The mean values of the collision frequencies
v (for electrons and ions) characterize the plasma behavior as a whole. These quantities are calculated for
mean values of temperatures and particle densities (for electrons and ions). At the same time vA4 (vA(v?)) is
the pitch angle scattering frequency which depends on particle energy (characterizing not plasma but particle)
(see [27,14]).

The effective ripple e (see also below), which is part of the 1/v neoclassical transport coefficients, takes into
account particles being trapped within one magnetic field ripple as well as particles being trapped within sev-
eral magnetic field ripples without restrictions to the complexity of the magnetic field [14]. This is an advance-
ment to the standard neoclassical theory (see, e.g. [27,33,34]) where simplifications to the magnetic field were
made and only particles trapped within single wells were taken into account.

In the following it is assumed that ions are cold and their transport coefficients are much smaller than those
for electrons. Thus ion fluxes are put to zero. Due to the ambipolarity condition such 0®/0r is established that
the electron flux is equal to ion flux, what results in F;, = 0. Estimating, with help of this condition and Eq. (1),
gradients of n and @ one obtains for the electron heat flux density

or
Fy = —k| — 4
w KL o’ (4)
where
D12Dy s T2
KL =n( Dy — 22 = ot 5
L ( 2= ) i (5)

where C is weakly (via Coulomb logarithm) dependent on device and plasma parameters.
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The electron heat balance equation takes the form

03 1 0 aT

where S'is a magnetlc surface area and Q(r) is the flux surface averaged electron heat source. As it can be seen
below, in case of TJ-II the shape of flux surfaces changes only little with radius and, therefore, S scales almost
linearly with radius r, S ~ 4n°aRor, where « is a factor depending on the shape of the flux surfaces. Consid-
ering steady-state and replacing S with r in (6) one gets

10 or
P TN = (7)
which is supplemented with the following boundary conditions
T(a) =0 and (8a)
or
li — | =
0 (r ar> 0 (8b)

where a is the plasma radius (this is either the radius of the last closed magnetic surface or of the last surface
which does not intersect the wall). Assuming that the heat source is located at the magnetic axis,

P o(r—A4)

= A
0) = gy e A= 40, ©)
where P is the input power. Integration of (7) from 0 to r and using (8b) gives
or P
(10)

o T ae R

Substituting here (5), dividing the result by eif/fz, integrating it from r to a and using (8a) gives

2 C P “ o dr
9 32;2 T°(r) +4n2R0fx/ reaf/fz( ): 0, (11)
or, explicitly
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Thus, one obtains for the total stored energy
a 3 R
W= /0 drS5nT = cP°BY°RY P ng W (13)

with the normalized stored energy

W= /0 drra(r) (/ ”;é%)w (14)

and 7 = n/ny. The normalized stored energy is used for the optimization since the other quantities in Eq. (13)

do not depend on coil currents or the effective radius and, therefore, stay constant during the optimization

procedure. The integration variable in Eq. (14) is the effective radius of the magnetic flux surface as defined

in Section 2.2. The effective ripple, e, contains the characteristic features of the magnetic field geometry.
In accordance with [14], the quantity ezf/fz is represented as

2 Ly -2 B g Jmax fy2
& =0 iy (/ @></ &v ) x/m 'y =L 15
cff 8\/2 Le—00 B 0 B | IM 'b”)/BO Z '1\ ) ( )

min Jj=1 J
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This quantity is computed by integration over the magnetic field line, s, over a sufficiently large interval 0 — L,
and by integration over the perpendicular adiabatic invariant of trapped particles, J, . Here, Bfﬁﬁf ) and BE;‘:;)
are the minimum and maximum values of B within the interval [0, L,]. The quantities sf-mm) and sﬁmax) within the
sum over j in (15)—(17) correspond to the turning points of trapped particles. This integration takes into ac-
count all kinds of trapped particles, such as those trapped within one magnetic field ripple as well as particles
trapped within several magnetic field ripples. The geodesic curvature of the magnetic field line, which is given
as kg = (h x (h - V)h) - Vi/|Vy| with the unit vector h = B/B.

In case of Boozer magnetic coordinates [35] the gradient of the flux surface label Vi is calculated using the
Boozer spectra of the coordinates of the magnetic surfaces (see Refs. [14,36]). In the present work computa-
tions are done in real space coordinates namely, in cylindrical coordinates & = (R, Z, ¢), and Vi is calculated
using integration along the magnetic field line of the equations for the vector P = Vi (see Refs. [37,14))

dp; 1 0B/
4~ Bog'” (18)
where B are the contra-variant components of B in real-space coordinates &', and P;= /0 are the covar-
iant components of P.
The magnetic field is computed directly from coil parameters with the use of a Biot-Savart code.

2.2. Effective radius of a magnetic surface

The effective radius of a magnetic flux surface is defined in [14] in differential form, Sdr = dV, where S is the
area of the magnetic surface and ¥V is the volume enclosed by that magnetic surface. In this case, the compu-
tation r requires the calculation of many magnetic surfaces. The accuracy is low if just a few surfaces are used.
To overcome this problem, a different definition of an effective radius r.;y = 2V/S, which can be calculated dur-
ing a single field line integration, is introduced. Dividing the volume ¥, limited by the magnetic surface, by the
surface area S, one obtains

Ls

g2 J2JBUE 26V 2 J vy
TS 3 Jds 3V 3hex [F oyl

(19)

where Vi is the vector normal to the flux surface, r is a radius vector, B the module of the magnetic field and
ds a distance measured along the magnetic field line. Formally the effective radius can take negative values if
the gradient at the starting point is inward directed. The definition (19) is used in Eq. (14) for the optimization.

The computation of the normal vector Vi during the field line integration can be done if its direction is
known at the beginning of the integration (see [37]). The direction of Vi is given at Z =0 in the ¢ =0
plane due to symmetry properties of the magnetic flux surface in this point. With the choice |Vy| =1 at
this point, the flux surface label ¥ coincides with Ry, up to an additive constant, where Ry, is a starting
value of R. Of course, if y is replaced with any other monotonous function of , this has no effect on the
results.

The effective radius (19) is close to the same quantity defined in [14], since the effective ellipticity of the
cross-sections of magnetic surfaces changes not significantly with the radius. Therefore, it is convenient to
use such a definition of a radius which can be computed for each field line during the field line integration.
A comparison of both definitions of the radius this is shown for TJ-II in Fig. 1.

For integrating Eq. (14) it is necessary to keep track of regions with field lines being: (i) stochastic, (ii) close
to rationals, or (iii) intercepted by the vacuum vessel, or (iv) forming islands. For these field lines the label
“inappropriate” will be used.
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Fig. 1. The effective radius calculated as proposed in [14] (solid line) compared to the effective radius as proposed in Eq. (19) with the field
line integration (crosses) for the TJ-II “‘standard” configuration.

2.3. Detection of islands and inappropriate field lines

The effective radius of nested magnetic surfaces increases from the magnetic axis towards the plasma
boundary. The effective radius of a magnetic island is very small compared to the radius of neighboring mag-
netic surfaces (see Fig. 2). In Fig. 2 the island appears at Ry, = 1.643 m. The computed effective radius of the
island is rep = —0.009 m (see explanation after formula (19)), which is considerably smaller than the effective
radius of the neighboring flux surfaces with absolute values of their effective radius of about 0.11 m and
0.13 m. An example where the island chain appears close to the last closed magnetic surface is given in Fig. 3.

The integration of Eq. (14) is done with respect to r.q. As can be seen from Fig. 2, the effective radius is not
continuously increasing when islands are taken into account, so islands have to be detected and excluded from
integration of Eq. (14).

The detection of magnetic islands is done in the ¢ = 0 plane. For this purpose the angle o between the vec-
tors ry and Vi is used (see Fig. 4). The vector r, points from the magnetic axis (M 4) to a point on the magnetic
surface. The magnetic axis is the innermost (degenerated) magnetic surface with r.; = 0. For any magnetic sur-
face cos o has the same sign (negative in our case) for all points on the surface. If the magnetic axis is not
located inside the flux surface, like for magnetic islands, the numbers of positive and negative values for
cos o are close to each other.

0.15

.
0.05 ‘/j‘i

0 ¥ /ﬁ‘
-0.05 %g&/
-0.1

-0.15
P

-0.2

foff [M]

1.6 1.65 1.7 1.75 1.8 1.85
l:‘beg [m]

Fig. 2. Finding the magnetic axis for the standard configuration of the TJ-II in the ¢ =0 plane. The point at Ry, = 1.643 m with
rer = —0.009 m belongs to an island and is not used for finding the magnetic axis.
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Fig. 3. Cross sections of the TJ-II standard configuration. Only the “good surfaces” are used for computation of the stored energy, field
lines labeled with “inappropriate field line” are not used. Error codes are used for field lines forming stochastic zones or islands, touching
the vacuum vessel or where the maximum number of periods for integration is exceeded.

The magnetic axis is found by fitting the effective radius reg vs. the initial value Ry, for the field line inte-
gration (see Fig. 2). For the magnetic axis, as mentioned above rg is zero. For fitting rep( Rpeg) only the nested
flux surfaces can be used, therefore, islands have to be excluded.

The normal vector Vi is sensitive to islands close to a magnetic surface. For this flux surface Vi shows a
characteristic convexity. This is shown in Fig. 5. The island 1 (Fig. 5a) close to the surface 2 (Fig. 5b) cause
small “bumps” in the distribution of Vi over the surface which are not seen in case of surface 3.

Field lines which belong to a stochastic zone do not form a magnetic surface. For such field lines the mod-
ule of Vi increases continuously. This behavior can be explained by the fact that, in this case, the function
(as well as Vi) is not a single valued function of the position. These field lines can be easily marked as
“inappropriate”.

Field lines, which form islands, belong to a stochastic zone or to a zone where the rotational transform +
(for definition see Eq. (27)) is close to a rational number are not used for computations of the total stored
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Fig. 4. Island detection: Here a flux surface la and an island 2a corresponding to + = 1/4 are shown. The corresponding shapes of the
normal vector Vi to the flux surface and the island are labeled with 1b and 2b. M A denotes the magnetic axis and S the magnetic surface.

Fig. 5. Flux surfaces and the corresponding Vi for some points on the flux surfaces (see also Fig.
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energy. Nevertheless, they are shown in the plots of cross sections to present a picture as realistic as possible.
The unused field lines are marked with “inappropriate field line”.

Note that the impact on confinement of zones with magnetic islands and with field lines termed as “inap-
propriate” is negative. Because of the big longitudinal heat conductivity the temperature gradient in such
zones is negligible. Therefore, for the intervals of r corresponding to such zones in Eq. (7) the T value is taken
to be constant.

3. Optimization procedure

The optimizer uses the Simulated Annealing (SA) algorithm, which is a stochastic method for optimization
and first presented by Kirkpatrik et al. [38]. It is used for solving combinatorial optimization problems and has
been proven to be a good technique for numerous applications [39,40]. In the following subsection the Sim-
ulated Annealing algorithm, as it is used, is summarized.

3.1. Theoretical basis of the Simulated Annealing algorithm

The idea behind the SA algorithm is borrowed from thermodynamics and models the way liquids crys-
tallize and freeze during an annealing process. When the temperature is high the particles can move freely.
The high kinetic energy enables the particles to overcome the differences of potential energies of various
configurations. Cooling down a liquid slowly causes a loss of mobility and an ordering process is achieved.
If the result is an ideal crystal, the cost function (free energy) attains its absolute minimum. If the cooling
process is too fast, the system achieves a non ideal state and ends up in a local minimum (which corre-
sponds to a polycrystalline or amorphous state). As it is of interest to find the global minimum, a slow cool-
ing process is simulated. An artificial temperature 7 and a probability distribution pg(x,|7), the so called
acceptance distribution for a given configuration x and a given temperature 7, are introduced. The cost
function, which is to be minimized, is denoted by E(x) and can depend on a set of either discrete or con-
tinuous variables x. It is set to

1
Pi(x|T) = e EFun) 7 (20)
which corresponds to a Boltzmann distribution with a normalization factor Z. Note, that the knowledge of
Enin 18 not really required, because this factor can be absorbed in Z. The distribution pg has a high probability
for states x with a low value for E(x). Close to the optimum states a random walk approach would take a long
time.
An implementation of SA requires the following three steps:

(1) Generation of states.
(2) Acceptance of states.
(3) A cooling scheme.

ad 1: Generation of states In the vicinity of the current state x,, ( is the step index) a trial point x; is chosen
randomly. The trial point is within a sphere around x,, with a radius ¢. When the temperature is lowered, o
is reduced too.

ad 2: Acceptance of states For a chosen x; the acceptance probability

o peD)
= ml“{l’pﬁ<xn|r>} 2

governs the acceptance of x,. The new state is accepted as x,, 1 if ¢ = 1, otherwise a pseudo random number r
is created. If r < ¢ the new state x, is accepted as x,,; otherwise the old state is kept x4+ = x,, for the next
step. This enables a possibility for leaving a local minimum.
ad 3: Cooling scheme A proper choice of a initial temperature 7 is an important first step. The initial
temperature
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Ty = \/{(3E)*)(c0) (22)

is used, where ((515)2)(00) is the variance of the energy (cost function) at 7'= co. The criterion for T, ensures
that E(T) lies just within the area of fluctuations of ((6E)*)(c0).

For a proper cooling strategy it is required that the probability of acceptance for two consecutive temper-
atures T, and T} differs by a sufficiently small amount. This is achieved if
L _ T
1+0  pp(x[Tir1)
with ¢ < 1. Using the Boltzmann distribution 7). is obtained as
Ty

Tr :
1 ti 7= oo In(1 + 9)

<1456 (23)

Tk+1 = (24)

The advantage of this scheme compared to the simple 7} = Tog* with e.g. ¢ = 0.95 is, that phase transitions
are automatically taken into account and the temperature there is lowered slowly. Close to phase transitions,
fluctuations are rather large and the simulation could end up in a configuration far away from the optimum
configuration. If the simple cooling scheme is used, the probability to end up in such a configuration is higher
than for the cooling scheme (24).

Finally, it has to be detected when the simulation has converged, meaning that the current temperature 7j
has reached the end temperature 7,. SA has converged if the expectation value (E)(T,) differs from the optimal
value E.,;, only by a sufficiently small value &. This is expressed as

<E>(Te) — Emnin
(E)(To) — (E)(T.)
which results in the criterion

<& (25)

2

(©ENT) 26)
T((E)(To) — (E)(Te))

As cost function for the optimization procedure £ = — W is used, since the goal is to find a maximum of w.

The proper computation of the normalized stored energy Wisa key feature of the optimization code designed
for improving existing devices through (minor) changes in coil currents (and/or coil positions) [25,41].

3.2. Problem specific

For computing the normalized stored energy with help of Eq. (14) it is necessary to compute the effective
ripple e (Eq. (15)) and the effective radius (Eq. (19)) for a certain amount of flux surfaces. As already men-
tioned in previous sections, only good field lines forming good flux surfaces (this are field lines which are not
labeled as inappropriate) can be used.

For a good estimation of the normalized stored energy approximately 20 good flux surfaces are necessary.
As it is not possible at the start of SORSSA runs to know about the number of inappropriate field lines, a fixed
number of field lines which are computed is used. For interesting configurations could be seen, that the num-
ber of inappropriate field lines is less than 1/3 of the computed field lines within the plasma boundary. Con-
sequently, 30 field lines are computed within the plasma boundary. The interception by the vacuum vessel and
the stochasticity of a field line are detected during the integration. The detection of islands is done after com-
putation of all field lines, because the estimation of the magnetic axis is needed (see Section 2.3).

It has been seen, that for a good estimation of the effective ripple €. at least 200 field periods have to be
integrated. For stopping the field line integration a simple criterion is used — the field line should cover the flux
surface equally.

If the rotational transform #, defined in toroidal geometry as + = 1/2n with

1= lim 2 = lim 2%, (27)
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where ¢ is the angle of the toroidal rotation and 6 the angle in poloidal direction, is close to a rational number,
the field line covers the flux surface not equally. This means that the points at the cross sections are “‘blocked”
and not equally distributed (see Fig. 6). As a consequence, for covering the flux surface equally with the field
line, a large number of periods have to be followed for determining good values for €. and req. As this is of big
disadvantage for a optimization, field lines are inappropriate and integration is stopped if a limit of 2000 peri-
ods for integration is exceeded.

3.3. Acceleration of the procedure

The computational time for integrating a sufficient number of field lines for a magnetic field configuration is
very high. So it is desirable to speed up the computations.

As stated in the last paragraph of the Introduction TJ-II is well suited for SORSSA. In principle, finite 8
actually matters and in general f§ should be taken into account. It would be necessary to run MHD codes and
check the performance of finite plasma pressure after optimizing vacuum configurations (and perhaps if nec-
essary iterate the whole process). Because of the peculiarities of TJ-II and its stiffness with respect to f this
method is not necessary for TJ-II. Magnetic field lines can be computed independently from each other. There-
fore, it is possible to parallelize the computation of magnetic field lines. For this purpose the Message Passing
Interface (MPI) [42,43], a very flexible system, has been chosen. For SORSSA a master/slave model has been
implemented. The master process executes the Simulated Annealing algorithm and computes w according to
Eq. (14). The integrations of the field lines are done by the slave processes, which send (among other data) eszz
to the master process. The main advantage of this method for speeding up the computation is that the calcu-
lation of the total stored energy for one configuration on multiprocessor systems or clusters of computers is
very fast as it is done in parallel.

For further reduction of the computational time a relatively standard multi grid method is implemented. For
the computations only discrete values of the coil currents (and coil positions) are used. This means that a grid is
spanned over the parameter space defined by all variable quantities. The grid size is chosen in a way that the
total stored energy in plasma does not change excessively from one grid point to a neighboring one, so the func-
tion will not artificially become too spiky. A proper grid size is determined by performing preliminary scans.

If an interesting maximum of  is found, the optimization is started at this maximum or close to it with
a substantially refined grid and a reduced allowed parameter space to further resolve this maximum.
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Fig. 6. Comparison of a “good surface” (1) with a flux surface (2) with a near rational + (defined in Eq. (27)) of the TJ-II standard
configuration.
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Furthermore, all computed configurations are stored in a proper data structure in a database for restarts of the
optimizer. Therefore, it is not necessary to compute the same configuration twice.

With the methods for accelerating, described in this section, the time for computing the normalized stored
energy for one configuration is reduced to approximately 20 minutes when using 20 processors (Intel Xeon
CPU with 2.66 GHz) for computation of 30 field lines.

4. Application to TJ-II heliac-type stellarator

It is desirable to try to improve the neoclassical 1/v transport properties for the stellarator TJ-II [44] (see
Fig. 7). SORSSA is used to look for TJ-II configurations with enhanced energy confinement compared to the
TJ-1I standard configuration with respect to neoclassical 1/v transport properties as described in Section 2.
Calculations are performed in real space without changing the shape and position of the coils, but just by vary-
ing the currents flowing in the coils of the already built device. Note that in magnetic coordinates for the anal-
ogous purposes the STELLOPT [12] package from ORNL can be used.

The stellarator TJ-II is a medium size heliac (R = 1.5 m, @ < 0.2 m) with four field periods. The free param-
eters for the “common” TJ-II operation are (1) the toroidal coil current, (2) the current for the helical winding,
(3) the current for the central circular coil and (4) the current for vertical field coils. The coil system consists of
one central circular coil, two vertical field coils, 32 toroidal coils, which are helically displaced, and one central
helical coil wrapped around the central circular coil (following the winding law of the toroidal coils). The

Fig. 7. Sketch of the TJ-1I coil configuration.
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toroidal coils are responsible for the main magnetic field (By =~ 1 T). SORSSA offers the possibility to estimate
the quality of the 1/v neoclassical transport properties using real space coordinates. The main drawback is that
only vacuum configurations can be computed. This is not a severe problem, at least for TJ-1I, because of its
stiffness with respect to f, as mentioned in Section 3.3.

The effective helical ripple e.q is valid only in the 1/v long mean free path (Imfp) regime and for small
enough radial electric field such that angular velocity of poloidal rotation due to the electric drift is small com-
pared to effective collision frequency of electrons.

For a run of the optimizer the toroidal coil current, the current for the helical winding, the current for the
central circular coil and the current for vertical field coils are varied. The range of their variation is +20% of
the corresponding values for the standard configuration, which is within the technical constraints. For the par-
ticle density a constant profile is used.

Poincaré cuts of the field lines of the standard configuration at ¢ = 0 and at half of the period are shown in
Fig. 3. The corresponding value of the total stored energy is W =097-10"2 An improvement of the total
stored energy is obtained either by an increase of the plasma volume or a reduction in neoclassical transport
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Fig. 8. The re-normalized stored energy vs. number of configuration for the considered TJ-II configurations (see Egs. (14) and (28)).
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Fig. 9. Cross section of the “best” TJ-II configuration with enhanced total stored energy as compared to the standard configuration.
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or both. In the frame of these studies several configurations with enhanced stored energy could be found. This
can be seen in Fig. 8 where the re-normalized stored energy

Wo=W/Ws, (28)

with ¥ taken from Eq. (14) and the normalized stored energy of the TJ-II standard configuration Ws, is
shown for the considered configurations. Only for the very best configurations the total stored energy is in-
creased due to an increase of the plasma volume and a reduction in neoclassical transport. For the majority
of the considered configurations the plasma volume is improved and the neoclassical transport is increased or
vice versa. For the worst configurations a strongly reduced plasma volume and a strongly increased neoclas-
sical transport is observed. In order to illustrate the effect of neoclassical transport and plasma volume on con-
finement three selected computed cases are presented and discussed in the following.
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Fig. 10. Effective ripple eif/fz vs. effective radius rey for TJ-II configurations: “de-optimized”, standard, “best” and “‘red. transp.” with a
markedly reduced effective ripple.
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Fig. 11. Cross section of the ““red. transp.” TJ-1I configuration with enhanced total stored energy but reduced plasma volume as compared
to the “best” configuration.
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The first configuration, hereafter referred as “best” configuration, shown in Fig. 9 does not exhibit an island
structure close to the vacuum vessel (like the TJ-II standard configuration), which limits the plasma volume.
Moreover, as can be seen on Fig. 10, the value of the effective ripple for the “best” configuration is signifi-
cantly smaller than for the standard configuration. Consequently, the total stored energy in the “best” con-
figuration, W =141-10"% is higher as compared to the standard configuration, representing an increase
of ~45%. The second configuration is shown in Fig. 11 and is referred as “red. transp.” configuration. It
exhibits a slightly smaller plasma volume but with an even more reduced transport than in the “best” config-
uration, as can be seen in Fig. 10. For the “red. transp.” configuration the stored energy is found to be
W = 1.38- 1072, which is obviously a lesser performance then for the “best” configuration, although better
than the standard configuration. The “de-optimized” configuration, shown in Fig. 12, represents an extreme
case of low plasma volume and high transport (see Fig. 10) with, as a consequence, very poor confinement,
W =0.18-1072.

Another interesting quantity for characterizing configurations presented above can be to compare their
respective rotational transform +, defined in Eq. (27). The rotational transform profiles (see Fig. 13) are flat
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Fig. 12. Cross section of the “de-optimized” TJ-II configuration with low plasma volume and high neoclassical transport.
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Fig. 13. Rotational transform + vs. effective radius r.g for TJ-II configurations: “de-optimized”, standard, “best” and “red. transp.”.
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from the magnetic axis to about r.y~ 8 cm, which is roughly half of the plasma radius, and then increase
slightly towards the plasma edge (note, the plasma radius of the “de-optimized” configuration is ¢ =~ 5 cm).
For the “de-optimized” configuration + is close to —1.63.

5. Conclusion

SORSSA, a tool for optimizing stellarators in real space coordinates, has been successfully applied to the
heliac-type stellarator TJ-II. From the various configurations with enhanced stored energy which have been
found, three characteristic ones have been presented to illustrate the influence of neoclassical transport in
the 1/v regime and of plasma volume on confinement. Among those, a configuration with reduced transport
and, at the same time, increased plasma volume, as compared to the standard configuration, was shown to
have an increase in total stored energy of approximately 45% compared to the TJ-II standard configuration.
The same increase of the stored energy for the standard configuration would require, according to the scaling
law (13), 5.3 times higher input power P.

The optimization tool for stellarators, SORSSA, has shown that TJ-II vacuum configurations can be
improved in terms of neoclassical transport. Nevertheless some more investigations are desirable, e.g. to
ensure that configurations with enhanced stored energy are good operating points.

In principle it is also possible to modify SORSSA for fast checking of new and simple coil configurations,
e.g. if mainly circular, planar coils are considered. For such applications the positions and radii of coils would
be varied, in addition to coil currents, during an optimization run.
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